Some results on ultrapower capturing

Miha E. Habič (joint with R. Honzík)

Czech Technical University in Prague & Charles University

Winter School 2019, Hejnice

Large cardinals

A reasonable definition of large cardinals:

 κ is large if there is an elementary embedding $j\colon V\to M$ where

- κ is the critical point (meaning that κ is the first ordinal moved by j), and
- M is a transitive inner model which is "close" to V.

Examples include:

- measurable cardinals: any M is fine;
- θ -strong cardinals: $V_{\theta} \subseteq M$;
- θ -supercompact cardinals: ${}^{\theta}M \subseteq M$;

• . . .

```
Requiring M = V is inconsistent (Kunen).
```

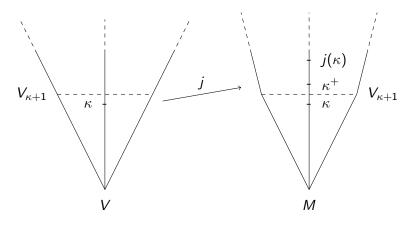
An alternative definition of measurability:

 κ is measurable if there is a κ -complete nonprincipal ultrafilter on κ (called a measure).

If U is such an ultrafilter then the ultrapower construction gives the model M = Ult(V, U) and the embedding $j: V \to M$.

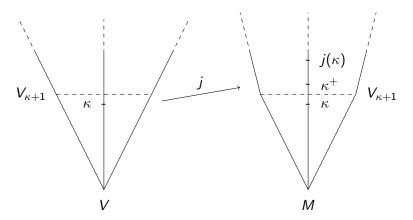
In particular, we get $\mathcal{P}(\kappa) \in M$, or equivalently $V_{\kappa+1} \in M$. On the other hand, it is an easy fact that $U \notin M$, which means $\mathcal{P}(\mathcal{P}(\kappa)) \notin M$.

Ultrapowers



WS2019

Ultrapowers



Question (Steel)

Is it consistent that κ carries a normal measure whose ultrapower contains all of $\mathcal{P}(\kappa^+)$?

Miha E. Habič

Some results on ultrapower capturing

WS2019 4 / 16

The capturing property

Definition

If κ, λ are cardinals, say that $CP(\kappa, \lambda)$ holds if there is a normal measure on κ whose ultrapower contains $\mathcal{P}(\lambda)$.

We observed earlier that $CP(\kappa, \kappa)$ holds and $CP(\kappa, 2^{\kappa})$ fails. Steel asked about the consistency of $CP(\kappa, \kappa^+)$.

Theorem (Cummings, 1993)

 $CP(\kappa, \kappa^+)$ is consistent relative to a $(\kappa + 2)$ -strong cardinal κ . Moreover, the hypothesis is optimal.

The proof strategy

How does one produce such a measure/ultrapower?

- Start with a sufficiently fat embedding $j: V \to M$ that captures $\mathcal{P}(\kappa^+)$ (but is not necessarily a measure ultrapower).
- **②** Force to V[G] in which $2^{\kappa} = \kappa^{++}$ and extend j to $j^* \colon V[G] \to M[H]$.
- O Hope for the best?

What saves us is the following key fact:

Fact

If $j: V \to M$ is a nice elementary embedding with critical point κ that can be extended to a forcing extension $j^*: V[G] \to M[H]$ in which 2^{κ} is large enough, then j^* is the ultrapower embedding by a normal measure on κ . Cummings showed that a measurable cardinal satisfying $CP(\kappa, \kappa^+)$ is large in an inner model. It is less clear whether the capturing property has any direct implications about the size of κ in V. In the previous proof κ started out quite large, and this remains true in the final model.

Theorem (H.–Honzík)

It is consistent relative to a $(\kappa + 2)$ -strong cardinal κ that $CP(\kappa, \kappa^+)$ holds at the least measurable cardinal κ .

We start with a fat embedding $j: V \to M$ again, but this time the forcing has to destroy all the measurables below κ in addition to forcing $2^{\kappa} = \kappa^{++}$.

One could try to first force $CP(\kappa, \kappa^+)$ and only later make κ the least measurable, but this is not likely to work.

The solution is to use a forcing that simultaneously kills measurability and adds subsets to the cardinal in question.

The Apter–Shelah forcing

Let γ be inaccessible and $\delta > \gamma$ regular. Fix a nonreflecting stationary set $S \subseteq \delta \cap \operatorname{Cof}(\omega)$ and let $\vec{X} = \langle X_{\alpha}; \alpha \in S \rangle$ be an S-ladder system (meaning that each X_{α} is an ω -sequence cofinal in α).

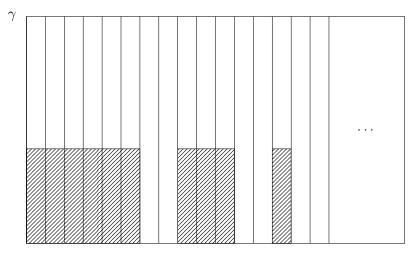
The forcing $\mathbb{A}(\gamma, \delta, \vec{X})$ has conditions (p, Z), where

• *p* is a uniform Cohen condition in $Add(\gamma, \delta)$;

- $Z \subseteq \vec{X};$
- $\exists \forall X_{\alpha} \in Z \colon X_{\alpha} \subseteq \operatorname{supp}(p).$

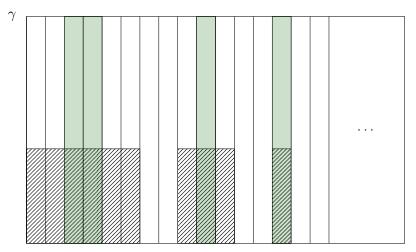
The side condition contains promises that the intersection of those countably many columns (or their complements) will never get a new element.

A condition



 δ

A condition



 δ

What is the forcing good for?

Unsurprising fact

$$\mathbb{A}(\gamma, \delta, \vec{X})$$
 forces $2^{\gamma} = \delta$.

What is the forcing good for?

Unsurprising fact

$$\mathbb{A}(\gamma, \delta, \vec{X})$$
 forces $2^{\gamma} = \delta$.

Somewhat surprising fact

If \vec{X} is a $\clubsuit_{\delta}(S)$ -sequence, then $\mathbb{A}(\gamma, \delta, \vec{X})$ forces that γ is not measurable.

What is the forcing good for?

Unsurprising fact

$$\mathbb{A}(\gamma, \delta, \vec{X})$$
 forces $2^{\gamma} = \delta$.

Somewhat surprising fact

If \vec{X} is a $\clubsuit_{\delta}(S)$ -sequence, then $\mathbb{A}(\gamma, \delta, \vec{X})$ forces that γ is not measurable.

Very suprising fact

If C is a generic club disjoint from S, then $\mathbb{A}(\gamma, \delta, \vec{X})$ is, in V[C], equivalent to $\operatorname{Add}(\gamma, \delta)$.

Outline of proof

Start with a $(\kappa + 2)$ -strong κ and a fat embedding $j: V \rightarrow M$.

Define a forcing iteration \mathbb{P}_{κ} which forces at each inaccessible $\gamma < \kappa$ with

$$\mathbb{S}_{\gamma^{++}} * \mathbb{A}(\gamma, \gamma^{++}, \vec{X})$$

where $\mathbb{S}_{\gamma^{++}}$ adds a nonreflecting stationary set $\dot{S} \subseteq \gamma^{++} \cap \text{Cof}(\omega)$ and \vec{X} is a $\mathbf{A}_{\gamma^{++}}(\dot{S})$ -sequence.

The actual forcing will be

$$\begin{split} \mathbb{P} &= \mathbb{P}_{\kappa} * \mathbb{S}_{\kappa^{++}} * (\mathbb{A}(\kappa, \kappa^{++}, \vec{Y}) \times \mathbb{C}(\dot{S})) \\ &\approx \mathbb{P}_{\kappa} * \mathsf{Add}(\kappa^{++}, 1) * \mathsf{Add}(\kappa, \kappa^{++}) \end{split}$$

Forcing with \mathbb{P} kills all of the measurables below κ and one can show that j can be lifted to this forcing extension. The lifted embedding witnesses $CP(\kappa, \kappa^+)$ in the extension.

Some related facts

One can play around with the values of 2^κ and capture powersets above κ^+ as well.

Theorem

If $\kappa < \lambda$ are cardinals and $cf(\lambda) > \kappa$, then $CP(\kappa, < \lambda)$ is consistent relative to an H_{λ} -strong cardinal κ . In this model $2^{\kappa} = \lambda$.

One might also ask whether it is possible that κ carries very few measures but the capturing property nevertheless holds.

Theorem

It is consistent relative to a $(\kappa + 2)$ -strong cardinal κ that κ carries a unique normal measure and that measure witnesses $CP(\kappa, \kappa^+)$.

Question

In the last theorem, can κ be made to be the least measurable?

A local version of capturing

Definition

If κ, λ are cardinals, say that LCP (κ, λ) holds if there is, for each $x \subseteq \lambda$, a normal measure on κ whose ultrapower contains x.

The local version stretches a bit further than full capturing: by an old argument of Solovay, LCP(κ , 2^{κ}) holds at any 2^{κ} -supercompact or (κ + 2)-strong κ . It is not difficult to see that LCP(κ , $(2^{\kappa})^+$) still fails.

Question

If κ is θ -supercompact for some $\kappa < \theta < 2^{\kappa}$, does LCP (κ, θ) hold?

The consistency strength of local capturing

Fact

If LCP(κ , 2^{κ}) holds then κ has maximal Mitchell rank.

We also get a bound from the other side.

Theorem

If $o(\kappa) \ge \kappa^{++}$ then LCP (κ, κ^{+}) holds in Mitchell's model $L[\vec{U}]$.

Actually, in this model there is a single function f such that $[f]_U$ can be any subset of κ^+ by a judicious choice of U.

Thank you.